Method of upper and lower solutions for second-order impulsive integro-differential equations in a Banach space
نویسندگان
چکیده
منابع مشابه
Global solutions for second order impulsive integro-differential equations in Banach spaces
This paper regards initial value problem for second order impulsive integro-differential equations as some nonlinear vector system. By means of the Mönch′s fixed point theorem, some existence theorems of solutions of the initial value problem are established. The results are newer than all of the previous ones because of the more general form compactness-type condition and the weaker restrictio...
متن کاملExistence of solutions of nth order impulsive integro - differential equations in Banach spaces ∗
In this paper, we prove the existence of solutions of initial value problems for nth order nonlinear impulsive integro-differential equations of mixed type on an infinite interval with an infinite number of impulsive times in Banach spaces. Our results are obtained by introducing a suitable measure of noncompactness.
متن کاملA NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.
متن کاملTriple positive solutions of nth order impulsive integro-differential equations
In this paper, we prove the existence of at least three positive solutions of boundary value problems for nth order nonlinear impulsive integrodifferential equations of mixed type on infinite interval with infinite number of impulsive times. Our results are obtained by applying a new fixed point theorem introduced by Avery and Peterson.
متن کاملPositive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(99)00196-0